simulation::montecarlo(3tcl) Tcl Simulation Tools simulation::montecarlo(3tcl)
______________________________________________________________________________
NAME
simulation::montecarlo - Monte Carlo simulations
SYNOPSIS
package require Tcl ?8.4?
package require simulation::montecarlo 0.1
package require simulation::random
package require math::statistics
::simulation::montecarlo::getOption keyword
::simulation::montecarlo::hasOption keyword
::simulation::montecarlo::setOption keyword value
::simulation::montecarlo::setTrialResult values
::simulation::montecarlo::setExpResult values
::simulation::montecarlo::getTrialResults
::simulation::montecarlo::getExpResult
::simulation::montecarlo::transposeData values
::simulation::montecarlo::integral2D ...
::simulation::montecarlo::singleExperiment args
______________________________________________________________________________
DESCRIPTION
The technique of Monte Carlo simulations is basically simple:
o generate random values for one or more parameters.
o evaluate the model of some system you are interested in and
record the interesting results for each realisation of these pa-
rameters.
o after a suitable number of such trials, deduce an overall char-
acteristic of the model.
You can think of a model of a network of computers, an ecosystem of
some kind or in fact anything that can be quantitatively described and
has some stochastic element in it.
The package simulation::montecarlo offers a basic framework for such a
modelling technique:
#
# MC experiments:
# Determine the mean and median of a set of points and compare them
#
::simulation::montecarlo::singleExperiment -init {
package require math::statistics
set prng [::simulation::random::prng_Normal 0.0 1.0]
} -loop {
set numbers {}
for { set i 0 } { $i < [getOption samples] } { incr i } {
lappend numbers [$prng]
}
set mean [::math::statistics::mean $numbers]
set median [::math::statistics::median $numbers] ;# ? Exists?
setTrialResult [list $mean $median]
} -final {
set result [getTrialResults]
set means {}
set medians {}
foreach r $result {
foreach {m M} $r break
lappend means $m
lappend medians $M
}
puts [getOption reportfile] "Correlation: [::math::statistics::corr $means $medians]"
} -trials 100 -samples 10 -verbose 1 -columns {Mean Median}
This example attemps to find out how well the median value and the mean
value of a random set of numbers correlate. Sometimes a median value is
a more robust characteristic than a mean value - especially if you have
a statistical distribution with "fat" tails.
PROCEDURES
The package defines the following auxiliary procedures:
::simulation::montecarlo::getOption keyword
Get the value of an option given as part of the singeExperiment
command.
string keyword
Given keyword (without leading minus)
::simulation::montecarlo::hasOption keyword
Returns 1 if the option is available, 0 if not.
string keyword
Given keyword (without leading minus)
::simulation::montecarlo::setOption keyword value
Set the value of the given option.
string keyword
Given keyword (without leading minus)
string value
(New) value for the option
::simulation::montecarlo::setTrialResult values
Store the results of the trial for later analysis
list values
List of values to be stored
::simulation::montecarlo::setExpResult values
Set the results of the entire experiment (typically used in the
final phase).
list values
List of values to be stored
::simulation::montecarlo::getTrialResults
Get the results of all individual trials for analysis (typically
used in the final phase or after completion of the command).
::simulation::montecarlo::getExpResult
Get the results of the entire experiment (typically used in the
final phase or even after completion of the singleExperiment
command).
::simulation::montecarlo::transposeData values
Interchange columns and rows of a list of lists and return the
result.
list values
List of lists of values
There are two main procedures: integral2D and singleExperiment.
::simulation::montecarlo::integral2D ...
Integrate a function over a two-dimensional region using a Monte
Carlo approach.
Arguments PM
::simulation::montecarlo::singleExperiment args
Iterate code over a number of trials and store the results. The
iteration is gouverned by parameters given via a list of key-
word-value pairs.
int n List of keyword-value pairs, all of which are available
during the execution via the getOption command.
The singleExperiment command predefines the following options:
o -init code: code to be run at start up
o -loop body: body of code that defines the computation to be run
time and again. The code should use setTrialResult to store the
results of each trial (typically a list of numbers, but the in-
terpretation is up to the implementation). Note: Required key-
word.
o -final code: code to be run at the end
o -trials n: number of trials in the experiment (required)
o -reportfile file: opened file to send the output to (default:
stdout)
o -verbose: write the intermediate results (1) or not (0) (de-
fault: 0)
o -analysis proc: either "none" (no automatic analysis), standard
(basic statistics of the trial results and a correlation matrix)
or the name of a procedure that will take care of the analysis.
o -columns list: list of column names, useful for verbose output
and the analysis
Any other options can be used via the getOption procedure in the body.
TIPS
The procedure singleExperiment works by constructing a temporary proce-
dure that does the actual work. It loops for the given number of tri-
als.
As it constructs a temporary procedure, local variables defined at the
start continue to exist in the loop.
KEYWORDS
math, montecarlo simulation, stochastic modelling
CATEGORY
Mathematics
COPYRIGHT
Copyright (c) 2008 Arjen Markus <arjenmarkus@users.sourceforge.net>
tcllib 0.1 simulation::montecarlo(3tcl)