pt::pgen(3tcl) Parser Tools pt::pgen(3tcl)
______________________________________________________________________________
NAME
pt::pgen - Parser Generator
SYNOPSIS
package require Tcl 8.5
package require pt::pgen ?1.1?
::pt::pgen inputformat text resultformat ?options...?
______________________________________________________________________________
DESCRIPTION
Are you lost ? Do you have trouble understanding this document ? In
that case please read the overview provided by the Introduction to
Parser Tools. This document is the entrypoint to the whole system the
current package is a part of.
This package provides a command implementing a parser generator taking
parsing expression grammars as input.
It is the implementation of method generate of pt, the Parser Tools Ap-
plication.
As such the intended audience of this document are people wishing to
modify and/or extend this part of pt's functionality. Users of pt on
the other hand are hereby refered to the applications' manpage, i.e.
Parser Tools Application.
It resides in the User Package Layer of Parser Tools.
IMAGE: arch_user_pkg
API
::pt::pgen inputformat text resultformat ?options...?
This command takes the parsing expression grammar in text (in
the format specified by inputformat), and returns the same gram-
mar in the format resultformat as the result of the command.
The two known input formats are peg and json. Introductions to
them, including their formal specifications, can be found in the
PEG Language Tutorial and The JSON Grammar Exchange Format. The
packages used to parse these formats are
peg pt::peg::from::peg
json pt::peg::from::json
On the output side the known formats, and the packages used to generate
them are
c pt::peg::to::cparam
container
pt::peg::to::container
critcl pt::peg::to::cparam + pt::cparam::configuration::critcl
json pt::peg::to::json
oo pt::peg::to::tclparam + pt::tclparam::configura-
tion::tcloo
peg pt::peg::to::peg
snit pt::peg::to::tclparam + pt::tclparam::configuration::snit
The options supported by each of these formats are documented
with their respective packages.
EXAMPLE
In this section we are working a complete example, starting with a PEG
grammar and ending with running the parser generated from it over some
input, following the outline shown in the figure below:
IMAGE: flow
Our grammar, assumed to the stored in the file "calculator.peg" is
PEG calculator (Expression)
Digit <- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9' ;
Sign <- '-' / '+' ;
Number <- Sign? Digit+ ;
Expression <- Term (AddOp Term)* ;
MulOp <- '*' / '/' ;
Term <- Factor (MulOp Factor)* ;
AddOp <- '+'/'-' ;
Factor <- '(' Expression ')' / Number ;
END;
From this we create a snit-based parser using the script "gen"
package require Tcl 8.5
package require fileutil
package require pt::pgen
lassign $argv name
set grammar [fileutil::cat $name.peg]
set pclass [pt::pgen peg $gr snit -class $name -file $name.peg -name $name]
fileutil::writeFile $name.tcl $pclass
exit 0
calling it like
tclsh8.5 gen calculator
which leaves us with the parser package and class written to the file
"calculator.tcl". Assuming that this package is then properly in-
stalled in a place where Tcl can find it we can now use this class via
a script like
package require calculator
lassign $argv input
set channel [open $input r]
set parser [calculator]
set ast [$parser parse $channel]
$parser destroy
close $channel
... now process the returned abstract syntax tree ...
where the abstract syntax tree stored in the variable will look like
set ast {Expression 0 4
{Factor 0 4
{Term 0 2
{Number 0 2
{Digit 0 0}
{Digit 1 1}
{Digit 2 2}
}
}
{AddOp 3 3}
{Term 4 4
{Number 4 4
{Digit 4 4}
}
}
}
}
assuming that the input file and channel contained the text
120+5
A more graphical representation of the tree would be
.nf +- Digit 0 0 | 1 | | +- Term 0 2 --- Number 0 2 -+-
Digit 1 1 | 2 | | | |
+- Digit 2 2 | 0 | | Expression
0 4 --- Factor 0 4 -+----------------------------- AddOp 3 3 | + |
| +- Term 4 4 --- Number 4 4 --- Digit 4 4 | 5 .fi
Regardless, at this point it is the user's responsibility to work with
the tree to reach whatever goal she desires. I.e. analyze it, transform
it, etc. The package pt::ast should be of help here, providing commands
to walk such ASTs structures in various ways.
One important thing to note is that the parsers used here return a data
structure representing the structure of the input per the grammar un-
derlying the parser. There are no callbacks during the parsing process,
i.e. no parsing actions, as most other parsers will have.
Going back to the last snippet of code, the execution of the parser for
some input, note how the parser instance follows the specified Parser
API.
BUGS, IDEAS, FEEDBACK
This document, and the package it describes, will undoubtedly contain
bugs and other problems. Please report such in the category pt of the
Tcllib Trackers [http://core.tcl.tk/tcllib/reportlist]. Please also
report any ideas for enhancements you may have for either package
and/or documentation.
When proposing code changes, please provide unified diffs, i.e the out-
put of diff -u.
Note further that attachments are strongly preferred over inlined
patches. Attachments can be made by going to the Edit form of the
ticket immediately after its creation, and then using the left-most
button in the secondary navigation bar.
KEYWORDS
EBNF, LL(k), PEG, TDPL, context-free languages, expression, grammar,
matching, parser, parsing expression, parsing expression grammar, push
down automaton, recursive descent, state, top-down parsing languages,
transducer
CATEGORY
Parsing and Grammars
COPYRIGHT
Copyright (c) 2009 Andreas Kupries <andreas_kupries@users.sourceforge.net>
tcllib 1.1 pt::pgen(3tcl)