public_key(3erl) Erlang Module Definition public_key(3erl)
NAME
public_key - API module for public-key infrastructure.
DESCRIPTION
Provides functions to handle public-key infrastructure, for details see
public_key(7).
COMMON RECORDS AND ASN.1 TYPES
Note:
All records used in this Reference Manual are generated from ASN.1
specifications and are documented in the User's Guide. See Public-key
Records.
Use the following include directive to get access to the records and
constant macros described here and in the User's Guide:
-include_lib("public_key/include/public_key.hrl").
DATA TYPES
oid() = tuple()
Object identifier, a tuple of integers as generated by the ASN.1
compiler.
der_encoded() = binary()
pki_asn1_type() =
'Certificate' | 'RSAPrivateKey' | 'RSAPublicKey' |
'DSAPrivateKey' | 'DSAPublicKey' | 'DHParameter' |
'SubjectPublicKeyInfo' | 'PrivateKeyInfo' |
'CertificationRequest' | 'CertificateList' | 'ECPrivateKey' |
'EcpkParameters'
asn1_type() = atom()
ASN.1 type present in the Public Key applications ASN.1 specifi-
cations.
pem_entry() =
{pki_asn1_type(),
der_or_encrypted_der(),
not_encrypted | cipher_info()}
der_or_encrypted_der() = binary()
cipher_info() = {cipher(), cipher_info_params()}
cipher() = string()
salt() = binary()
cipher_info_params() =
salt() |
{#'PBEParameter'{}, digest_type()} |
#'PBES2-params'{}
Cipher = "RC2-CBC" | "DES-CBC" | "DES-EDE3-CBC"
Salt could be generated with crypto:strong_rand_bytes(8).
public_key() =
rsa_public_key() |
rsa_pss_public_key() |
dsa_public_key() |
ec_public_key() |
ed_public_key()
rsa_public_key() = #'RSAPublicKey'{}
rsa_pss_public_key() =
{#'RSAPublicKey'{}, #'RSASSA-PSS-params'{}}
dsa_public_key() = {integer(), #'Dss-Parms'{}}
ec_public_key() = {#'ECPoint'{}, ecpk_parameters_api()}
ecpk_parameters() =
{ecParameters, #'ECParameters'{}} |
{namedCurve, Oid :: tuple()}
ecpk_parameters_api() =
ecpk_parameters() |
#'ECParameters'{} |
{namedCurve, Name :: crypto:ec_named_curve()}
ed_public_key() = {ed_pub, ed25519 | ed448, Key :: binary()}
Warning:
This format of the EdDSA curves is temporary and may change
without prior notice!
private_key() =
rsa_private_key() |
rsa_pss_private_key() |
dsa_private_key() |
ec_private_key() |
ed_private_key()
rsa_private_key() = #'RSAPrivateKey'{}
rsa_pss_private_key() =
{#'RSAPrivateKey'{}, #'RSASSA-PSS-params'{}}
dsa_private_key() = #'DSAPrivateKey'{}
ec_private_key() = #'ECPrivateKey'{}
ed_private_key() =
{ed_pri, ed25519 | ed448, Pub :: binary(), Priv :: binary()}
Warning:
This format of the EdDSA curves is temporary and may change
without prior notice!
key_params() =
#'DHParameter'{} |
{namedCurve, oid()} |
#'ECParameters'{} |
{rsa, Size :: integer(), PubExp :: integer()}
digest_type() =
none | sha1 |
crypto:rsa_digest_type() |
crypto:dss_digest_type() |
crypto:ecdsa_digest_type()
crl_reason() =
unspecified | keyCompromise | cACompromise |
affiliationChanged | superseded | cessationOfOperation |
certificateHold | privilegeWithdrawn | aACompromise
issuer_id() = {SerialNr :: integer(), issuer_name()}
issuer_name() = {rdnSequence, [#'AttributeTypeAndValue'{}]}
ssh_file() =
openssh_public_key | rfc4716_public_key | known_hosts |
auth_keys
EXPORTS
compute_key(OthersECDHkey, MyECDHkey) -> SharedSecret
Types:
OthersECDHkey = #'ECPoint'{}
MyECDHkey = #'ECPrivateKey'{}
SharedSecret = binary()
Computes shared secret.
compute_key(OthersDHkey, MyDHkey, DHparms) -> SharedSecret
Types:
OthersDHkey = crypto:dh_public()
MyDHkey = crypto:dh_private()
DHparms = #'DHParameter'{}
SharedSecret = binary()
Computes shared secret.
decrypt_private(CipherText, Key) -> PlainText
decrypt_private(CipherText, Key, Options) -> PlainText
Types:
CipherText = binary()
Key = rsa_private_key()
Options = crypto:pk_encrypt_decrypt_opts()
PlainText = binary()
Public-key decryption using the private key. See also
crypto:private_decrypt/4
decrypt_public(CipherText, Key) -> PlainText
decrypt_public(CipherText, Key, Options) -> PlainText
Types:
CipherText = binary()
Key = rsa_public_key()
Options = crypto:pk_encrypt_decrypt_opts()
PlainText = binary()
Public-key decryption using the public key. See also crypto:pub-
lic_decrypt/4
der_decode(Asn1Type, Der) -> Entity
Types:
Asn1Type = asn1_type()
Der = binary()
Entity = term()
Decodes a public-key ASN.1 DER encoded entity.
der_encode(Asn1Type, Entity) -> Der
Types:
Asn1Type = asn1_type()
Entity = term()
Der = binary()
Encodes a public-key entity with ASN.1 DER encoding.
dh_gex_group(MinSize, SuggestedSize, MaxSize, Groups) ->
{ok, {Size, Group}} | {error, term()}
Types:
MinSize = SuggestedSize = MaxSize = integer() >= 1
Groups = undefined | [{Size, [Group]}]
Size = integer() >= 1
Group = {G, P}
G = P = integer() >= 1
Selects a group for Diffie-Hellman key exchange with the key
size in the range MinSize...MaxSize and as close to Suggested-
Size as possible. If Groups == undefined a default set will be
used, otherwise the group is selected from Groups.
First a size, as close as possible to SuggestedSize, is se-
lected. Then one group with that key size is randomly selected
from the specified set of groups. If no size within the limits
of MinSize and MaxSize is available, {error,no_group_found} is
returned.
The default set of groups is listed in lib/public_key/priv/mod-
uli. This file may be regenerated like this:
$> cd $ERL_TOP/lib/public_key/priv/
$> generate
---- wait until all background jobs has finished. It may take several days !
$> cat moduli-* > moduli
$> cd ..; make
encrypt_private(PlainText, Key) -> CipherText
encrypt_private(PlainText, Key, Options) -> CipherText
Types:
PlainText = binary()
Key = rsa_private_key()
Options = crypto:pk_encrypt_decrypt_opts()
CipherText = binary()
Public-key encryption using the private key. See also
crypto:private_encrypt/4.
encrypt_public(PlainText, Key) -> CipherText
encrypt_public(PlainText, Key, Options) -> CipherText
Types:
PlainText = binary()
Key = rsa_public_key()
Options = crypto:pk_encrypt_decrypt_opts()
CipherText = binary()
Public-key encryption using the public key. See also crypto:pub-
lic_encrypt/4.
generate_key(Params :: DHparams | ECparams | RSAparams) ->
DHkeys | ECkey | RSAkey
Types:
DHparams = #'DHParameter'{}
DHkeys = {PublicDH :: binary(), PrivateDH :: binary()}
ECparams = ecpk_parameters_api()
ECkey = #'ECPrivateKey'{}
RSAparams = {rsa, Size, PubExp}
Size = PubExp = integer() >= 1
RSAkey = #'RSAPrivateKey'{}
Generates a new keypair. Note that except for Diffie-Hellman the
public key is included in the private key structure. See also
crypto:generate_key/2
pem_decode(PemBin :: binary()) -> [pem_entry()]
Decodes PEM binary data and returns entries as ASN.1 DER encoded
entities.
Example {ok, PemBin} = file:read_file("cert.pem"). PemEntries =
public_key:pem_decode(PemBin).
pem_encode(PemEntries :: [pem_entry()]) -> binary()
Creates a PEM binary.
pem_entry_decode(PemEntry) -> term()
pem_entry_decode(PemEntry, Password) -> term()
Types:
PemEntry = pem_entry()
Password = string()
Decodes a PEM entry. pem_decode/1 returns a list of PEM entries.
Notice that if the PEM entry is of type 'SubjectPublickeyInfo',
it is further decoded to an rsa_public_key() or dsa_pub-
lic_key().
pem_entry_encode(Asn1Type, Entity) -> pem_entry()
pem_entry_encode(Asn1Type, Entity, InfoPwd) -> pem_entry()
Types:
Asn1Type = pki_asn1_type()
Entity = term()
InfoPwd = {CipherInfo, Password}
CipherInfo = cipher_info()
Password = string()
Creates a PEM entry that can be feed to pem_encode/1.
If Asn1Type is 'SubjectPublicKeyInfo', Entity must be either an
rsa_public_key(), dsa_public_key() or an ec_public_key() and
this function creates the appropriate 'SubjectPublicKeyInfo' en-
try.
pkix_decode_cert(Cert, Type) ->
#'Certificate'{} | #'OTPCertificate'{}
Types:
Cert = der_encoded()
Type = plain | otp
Decodes an ASN.1 DER-encoded PKIX certificate. Option otp uses
the customized ASN.1 specification OTP-PKIX.asn1 for decoding
and also recursively decode most of the standard parts.
pkix_encode(Asn1Type, Entity, Type) -> Der
Types:
Asn1Type = asn1_type()
Entity = term()
Type = otp | plain
Der = der_encoded()
DER encodes a PKIX x509 certificate or part of such a certifi-
cate. This function must be used for encoding certificates or
parts of certificates that are decoded/created in the otp for-
mat, whereas for the plain format this function directly calls
der_encode/2.
pkix_is_issuer(Cert, IssuerCert) -> boolean()
Types:
Cert =
der_encoded() | #'OTPCertificate'{} | #'Certifi-
cateList'{}
IssuerCert = der_encoded() | #'OTPCertificate'{}
Checks if IssuerCert issued Cert.
pkix_is_fixed_dh_cert(Cert) -> boolean()
Types:
Cert = der_encoded() | #'OTPCertificate'{}
Checks if a certificate is a fixed Diffie-Hellman certificate.
pkix_is_self_signed(Cert) -> boolean()
Types:
Cert = der_encoded() | #'OTPCertificate'{}
Checks if a certificate is self-signed.
pkix_issuer_id(Cert, IssuedBy) ->
{ok, issuer_id()} | {error, Reason}
Types:
Cert = der_encoded() | #'OTPCertificate'{}
IssuedBy = self | other
Reason = term()
Returns the issuer id.
pkix_normalize_name(Issuer) -> Normalized
Types:
Issuer = Normalized = issuer_name()
Normalizes an issuer name so that it can be easily compared to
another issuer name.
pkix_path_validation(TrustedCert, CertChain, Options) -> {ok, {PublicK-
eyInfo, PolicyTree}} | {error, {bad_cert, Reason}}
Types:
TrustedCert = #'OTPCertificate'{} | der_encoded() | atom()
Normally a trusted certificate, but it can also be a path-
validation error that can be discovered while constructing
the input to this function and that is to be run through
the verify_fun. Examples are unknown_ca and self-
signed_peer.
CertChain = [der_encoded()]
A list of DER-encoded certificates in trust order ending
with the peer certificate.
Options = proplists:proplist()
PublicKeyInfo = {?'rsaEncryption' | ?'id-RSASSA-PSS'| ?'id-
dsa', rsa_public_key() | integer(), 'NULL' | 'RSASSA-PSS-
params'{} | 'Dss-Parms'{}}
PolicyTree = term()
At the moment this is always an empty list as policies are
not currently supported.
Reason = cert_expired | invalid_issuer | invalid_signature |
name_not_permitted | missing_basic_constraint | in-
valid_key_usage | {revoked, crl_reason()} | atom()
Performs a basic path validation according to RFC 5280. However,
CRL validation is done separately by pkix_crls_validate/3 and
is to be called from the supplied verify_fun.
Available options:
{verify_fun, {fun(), InitialUserState::term()}:
The fun must be defined as:
fun(OtpCert :: #'OTPCertificate'{},
Event :: {bad_cert, Reason :: atom() | {revoked, atom()}} |
{extension, #'Extension'{}},
InitialUserState :: term()) ->
{valid, UserState :: term()} |
{valid_peer, UserState :: term()} |
{fail, Reason :: term()} |
{unknown, UserState :: term()}.
If the verify callback fun returns {fail, Reason}, the veri-
fication process is immediately stopped. If the verify call-
back fun returns {valid, UserState}, the verification
process is continued. This can be used to accept specific
path validation errors, such as selfsigned_peer, as well as
verifying application-specific extensions. If called with an
extension unknown to the user application, the return value
{unknown, UserState} is to be used.
{max_path_length, integer()}:
The max_path_length is the maximum number of non-self-is-
sued intermediate certificates that can follow the peer cer-
tificate in a valid certification path. So, if
max_path_length is 0, the PEER must be signed by the trusted
ROOT-CA directly, if it is 1, the path can be PEER, CA,
ROOT-CA, if it is 2, the path can be PEER, CA, CA, ROOT-CA,
and so on.
Possible reasons for a bad certificate:
cert_expired:
Certificate is no longer valid as its expiration date has
passed.
invalid_issuer:
Certificate issuer name does not match the name of the is-
suer certificate in the chain.
invalid_signature:
Certificate was not signed by its issuer certificate in the
chain.
name_not_permitted:
Invalid Subject Alternative Name extension.
missing_basic_constraint:
Certificate, required to have the basic constraints exten-
sion, does not have a basic constraints extension.
invalid_key_usage:
Certificate key is used in an invalid way according to the
key-usage extension.
{revoked, crl_reason()}:
Certificate has been revoked.
atom():
Application-specific error reason that is to be checked by
the verify_fun.
pkix_crl_issuer(CRL :: CRL | #'CertificateList'{}) -> Issuer
Types:
CRL = der_encoded()
Issuer = issuer_name()
Returns the issuer of the CRL.
pkix_crls_validate(OTPcertificate, DPandCRLs, Options) ->
CRLstatus
Types:
OTPcertificate = #'OTPCertificate'{}
DPandCRLs = [DPandCRL]
DPandCRL = {DP, {DerCRL, CRL}}
DP = #'DistributionPoint'{}
DerCRL = der_encoded()
CRL = #'CertificateList'{}
Options = [{atom(), term()}]
CRLstatus = valid | {bad_cert, BadCertReason}
BadCertReason =
revocation_status_undetermined |
{revocation_status_undetermined, Reason :: term()} |
{revoked, crl_reason()}
Performs CRL validation. It is intended to be called from the
verify fun of pkix_path_validation/3 .
Available options:
{update_crl, fun()}:
The fun has the following type specification:
fun(#'DistributionPoint'{}, #'CertificateList'{}) ->
#'CertificateList'{}
The fun uses the information in the distribution point to
access the latest possible version of the CRL. If this fun
is not specified, Public Key uses the default implementa-
tion:
fun(_DP, CRL) -> CRL end
{issuer_fun, fun()}:
The fun has the following type specification:
fun(#'DistributionPoint'{}, #'CertificateList'{},
{rdnSequence,[#'AttributeTypeAndValue'{}]}, term()) ->
{ok, #'OTPCertificate'{}, [der_encoded]}
The fun returns the root certificate and certificate chain
that has signed the CRL.
fun(DP, CRL, Issuer, UserState) -> {ok, RootCert, CertChain}
{undetermined_details, boolean()}:
Defaults to false. When revocation status cannot be deter-
mined, and this option is set to true, details of why no
CRLs where accepted are included in the return value.
pkix_crl_verify(CRL, Cert) -> boolean()
Types:
CRL = der_encoded() | #'CertificateList'{}
Cert = der_encoded() | #'OTPCertificate'{}
Verify that Cert is the CRL signer.
pkix_dist_point(Cert) -> DistPoint
Types:
Cert = der_encoded() | #'OTPCertificate'{}
DistPoint = #'DistributionPoint'{}
Creates a distribution point for CRLs issued by the same issuer
as Cert. Can be used as input to pkix_crls_validate/3
pkix_dist_points(Cert) -> DistPoints
Types:
Cert = der_encoded() | #'OTPCertificate'{}
DistPoints = [#'DistributionPoint'{}]
Extracts distribution points from the certificates extensions.
pkix_hash_type(HashOid :: oid()) ->
DigestType ::
md5 | crypto:sha1() | crypto:sha2()
Translates OID to Erlang digest type
pkix_match_dist_point(CRL, DistPoint) -> boolean()
Types:
CRL = der_encoded() | #'CertificateList'{}
DistPoint = #'DistributionPoint'{}
Checks whether the given distribution point matches the Issuing
Distribution Point of the CRL, as described in RFC 5280. If the
CRL doesn't have an Issuing Distribution Point extension, the
distribution point always matches.
pkix_sign(Cert, Key) -> Der
Types:
Cert = #'OTPTBSCertificate'{}
Key = private_key()
Der = der_encoded()
Signs an 'OTPTBSCertificate'. Returns the corresponding DER-en-
coded certificate.
pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType}
Types:
AlgorithmId = oid()
DigestType = crypto:rsa_digest_type()
SignatureType = rsa | dsa | ecdsa
Translates signature algorithm OID to Erlang digest and signa-
ture types.
The AlgorithmId is the signature OID from a certificate or a
certificate revocation list.
pkix_test_data(Options) -> Config
pkix_test_data([chain_opts()]) -> [conf_opt()]
Types:
Options = #{chain_type() := chain_opts()}
Options for ROOT, Intermediate and Peer certs
chain_type() = server_chain | client_chain
chain_opts() = #{root := [cert_opt()] | root_cert(), peer :=
[cert_opt()], intermediates => [[cert_opt()]]}
A valid chain must have at least a ROOT and a peer cert.
The root cert can be given either as a cert pre-generated
by pkix_test_root_cert/2 , or as root cert generation op-
tions.
root_cert() = #{cert := der_encoded(), key := Key}
A root certificate generated by pkix_test_root_cert/2 .
cert_opt() = {Key, Value}
For available options see cert_opt() below.
Config = #{server_config := [conf_opt()], client_config :=
[conf_opt()]}
conf_opt() = {cert, der_encoded()} | {key, PrivateKey} |{cac-
erts, [der_encoded()]}
This is a subset of the type ssl:tls_option(). PrivateKey
is what generate_key/1 returns.
Creates certificate configuration(s) consisting of certificate
and its private key plus CA certificate bundle, for a client and
a server, intended to facilitate automated testing of applica-
tions using X509-certificates, often through SSL/TLS. The test
data can be used when you have control over both the client and
the server in a test scenario.
When this function is called with a map containing client and
server chain specifications; it generates both a client and a
server certificate chain where the cacerts returned for the
server contains the root cert the server should trust and the
intermediate certificates the server should present to connect-
ing clients. The root cert the server should trust is the one
used as root of the client certificate chain. Vice versa applies
to the cacerts returned for the client. The root cert(s) can ei-
ther be pre-generated with pkix_test_root_cert/2 , or if op-
tions are specified; it is (they are) generated.
When this function is called with a list of certificate options;
it generates a configuration with just one node certificate
where cacerts contains the root cert and the intermediate certs
that should be presented to a peer. In this case the same root
cert must be used for all peers. This is useful in for example
an Erlang distributed cluster where any node, towards another
node, acts either as a server or as a client depending on who
connects to whom. The generated certificate contains a subject
altname, which is not needed in a client certificate, but makes
the certificate useful for both roles.
The cert_opt() type consists of the following options:
{digest, digest_type()}:
Hash algorithm to be used for signing the certificate to-
gether with the key option. Defaults to sha that is sha1.
{key, key_params() | private_key()}:
Parameters to be used to call public_key:generate_key/1, to
generate a key, or an existing key. Defaults to generating
an ECDSA key. Note this could fail if Erlang/OTP is compiled
with a very old cryptolib.
{validity, {From::erlang:timestamp(), To::erlang:time-
stamp()}} :
The validity period of the certificate.
{extensions, [#'Extension'{}]}:
Extensions to include in the certificate.
Default extensions included in CA certificates if not other-
wise specified are:
[#'Extension'{extnID = ?'id-ce-keyUsage',
extnValue = [keyCertSign, cRLSign],
critical = false},
#'Extension'{extnID = ?'id-ce-basicConstraints',
extnValue = #'BasicConstraints'{cA = true},
critical = true}]
Default extensions included in the server peer cert if not
otherwise specified are:
[#'Extension'{extnID = ?'id-ce-keyUsage',
extnValue = [digitalSignature, keyAgreement],
critical = false},
#'Extension'{extnID = ?'id-ce-subjectAltName',
extnValue = [{dNSName, Hostname}],
critical = false}]
Hostname is the result of calling net_adm:localhost() in the
Erlang node where this funcion is called.
Note:
Note that the generated certificates and keys does not provide a
formally correct PKIX-trust-chain and they cannot be used to
achieve real security. This function is provided for testing
purposes only.
pkix_test_root_cert(Name, Options) -> RootCert
Types:
Name = string()
The root certificate name.
Options = [cert_opt()]
For available options see cert_opt() under
pkix_test_data/1.
RootCert = #{cert := der_encoded(), key := Key}
A root certificate and key. The Key is generated by gener-
ate_key/1.
Generates a root certificate that can be used in multiple calls
to pkix_test_data/1 when you want the same root certificate for
several generated certificates.
pkix_verify(Cert, Key) -> boolean()
Types:
Cert = der_encoded()
Key = public_key()
Verifies PKIX x.509 certificate signature.
pkix_verify_hostname(Cert, ReferenceIDs) -> boolean()
pkix_verify_hostname(Cert, ReferenceIDs, Opts) -> boolean()
Types:
Cert = der_encoded() | #'OTPCertificate'{}
ReferenceIDs = [ RefID ]
RefID = {dns_id,string()} | {srv_id,string()} |
{uri_id,string()} | {ip,inet:ip_address()|string()} | {Other-
RefID,term()}}
OtherRefID = atom()
Opts = [ PvhOpt() ]
PvhOpt = [MatchOpt | FailCallBackOpt | FqdnExtractOpt]
MatchOpt = {match_fun, fun(RefId | FQDN::string(), Presente-
dID) -> boolean() | default}
PresentedID = {dNSName,string()} | {uniformResourceIdenti-
fier,string() | {iPAddress,list(byte())} | {Other-
PresId,term()}}
OtherPresID = atom()
FailCallBackOpt = {fail_callback, fun(#'OTPCertificate'{}) ->
boolean()}
FqdnExtractOpt = {fqdn_fun, fun(RefID) -> FQDN::string() |
default | undefined}
This function checks that the Presented Identifier (e.g host-
name) in a peer certificate is in agreement with at least one of
the Reference Identifier that the client expects to be con-
nected to. The function is intended to be added as an extra
client check of the peer certificate when performing pub-
lic_key:pkix_path_validation/3
See RFC 6125 for detailed information about hostname verifica-
tion. The User's Guide and code examples describes this function
more detailed.
The {OtherRefId,term()} is defined by the user and is passed to
the match_fun, if defined. If the term in OtherRefId is a bi-
nary, it will be converted to a string.
The ip Reference ID takes an inet:ip_address() or an ip address
in string format (E.g "10.0.1.1" or "1234::5678:9012") as second
element.
The options are:
match_fun:
The fun/2 in this option replaces the default host name
matching rules. The fun should return a boolean to tell if
the Reference ID and Presented ID matches or not. The fun
can also return a third value, the atom default, if the de-
fault matching rules shall apply. This makes it possible to
augment the tests with a special case:
fun(....) -> true; % My special case
(_, _) -> default % all others falls back to the inherit tests
end
See pkix_verify_hostname_match_fun/1 for a function that takes
a protocol name as argument and returns a fun/2 suitable for
this option and Re-defining the match operation in the User's
Guide for an example.
fail_callback:
If a matching fails, there could be circumstances when the
certificate should be accepted anyway. Think for example of
a web browser where you choose to accept an outdated cer-
tificate. This option enables implementation of such a func-
tion. This fun/1 is called when no ReferenceID matches. The
return value of the fun (a boolean()) decides the outcome.
If true the the certificate is accepted otherwise it is re-
jected. See "Pinning" a Certificate in the User's Guide.
fqdn_fun:
This option augments the host name extraction from URIs and
other Reference IDs. It could for example be a very special
URI that is not standardised. The fun takes a Reference ID
as argument and returns one of:
* the hostname
* the atom default: the default host name extract function
will be used
* the atom undefined: a host name could not be extracted.
The pkix_verify_hostname/3 will return false.
For an example, see Hostname extraction in the User's Guide.
pkix_verify_hostname_match_fun(Protcol) -> fun(RefId | FQDN::string(),
PresentedID) -> boolean() | default
Types:
Protocol = https
The algorithm for wich the fun should implement the special
matching rules
RefId
See pkix_verify_hostname/3.
FQDN
See pkix_verify_hostname/3.
PresentedID
See pkix_verify_hostname/3.
The return value of calling this function is intended to be used
in the match_fun option in pkix_verify_hostname/3.
The returned fun augments the verify hostname matching according
to the specific rules for the protocol in the argument.
sign(Msg, DigestType, Key) -> Signature
sign(Msg, DigestType, Key, Options) -> Signature
Types:
Msg = binary() | {digest, binary()}
DigestType = digest_type()
Key = private_key()
Options = crypto:pk_sign_verify_opts()
Signature = binary()
Creates a digital signature.
The Msg is either the binary "plain text" data to be signed or
it is the hashed value of "plain text", that is, the digest.
ssh_decode(SshBin, Type) -> Decoded
Types:
SshBin = binary()
Type = ssh2_pubkey | OtherType | InternalType
OtherType = public_key | ssh_file()
InternalType = new_openssh
Decoded = Decoded_ssh2_pubkey | Decoded_OtherType
Decoded_ssh2_pubkey = public_key()
Decoded_OtherType = [{public_key(), Attributes}]
Attributes = [{atom(), term()}]
Decodes an SSH file-binary. In the case of known_hosts or
auth_keys, the binary can include one or more lines of the file.
Returns a list of public keys and their attributes, possible at-
tribute values depends on the file type represented by the bi-
nary.
If the Type is ssh2_pubkey, the result will be Decoded_ssh2_pub-
key. Otherwise it will be Decoded_OtherType.
RFC4716 attributes - see RFC 4716.:
{headers, [{string(), utf8_string()}]}
auth_key attributes - see manual page for sshd.:
{comment, string()}{options, [string()]}{bits, integer()} -
In SSH version 1 files.
known_host attributes - see manual page for sshd.:
{hostnames, [string()]}{comment, string()}{bits, integer()}
- In SSH version 1 files.
Example: {ok, SshBin} = file:read_file("known_hosts").
If Type is public_key the binary can be either an RFC4716 public
key or an OpenSSH public key.
ssh_encode(InData, Type) -> binary()
Types:
Type = ssh2_pubkey | OtherType
OtherType = public_key | ssh_file()
InData = InData_ssh2_pubkey | OtherInData
InData_ssh2_pubkey = public_key()
OtherInData = [{Key, Attributes}]
Key = public_key()
Attributes = [{atom(), term()}]
Encodes a list of SSH file entries (public keys and attributes)
to a binary. Possible attributes depend on the file type, see
ssh_decode/2 .
If the Type is ssh2_pubkey, the InData shall be InData_ssh2_pub-
key. Otherwise it shall be OtherInData.
ssh_hostkey_fingerprint(HostKey) -> string()
ssh_hostkey_fingerprint(DigestType, HostKey) -> string()
ssh_hostkey_fingerprint([DigestType], HostKey) -> [string()]
Types:
HostKey = public_key()
DigestType = digest_type()
Calculates a ssh fingerprint from a public host key as openssh
does.
The algorithm in ssh_hostkey_fingerprint/1 is md5 to be compati-
ble with older ssh-keygen commands. The string from the second
variant is prepended by the algorithm name in uppercase as in
newer ssh-keygen commands.
Examples:
2> public_key:ssh_hostkey_fingerprint(Key).
"f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84"
3> public_key:ssh_hostkey_fingerprint(md5,Key).
"MD5:f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84"
4> public_key:ssh_hostkey_fingerprint(sha,Key).
"SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY"
5> public_key:ssh_hostkey_fingerprint(sha256,Key).
"SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"
6> public_key:ssh_hostkey_fingerprint([sha,sha256],Key).
["SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY",
"SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"]
verify(Msg, DigestType, Signature, Key) -> boolean()
verify(Msg, DigestType, Signature, Key, Options) -> boolean()
Types:
Msg = binary() | {digest, binary()}
DigestType = digest_type()
Signature = binary()
Key = public_key()
Options = crypto:pk_sign_verify_opts()
Verifies a digital signature.
The Msg is either the binary "plain text" data or it is the
hashed value of "plain text", that is, the digest.
short_name_hash(Name) -> string()
Types:
Name = issuer_name()
Generates a short hash of an issuer name. The hash is returned
as a string containing eight hexadecimal digits.
The return value of this function is the same as the result of
the commands openssl crl -hash and openssl x509 -issuer_hash,
when passed the issuer name of a CRL or a certificate, respec-
tively. This hash is used by the c_rehash tool to maintain a di-
rectory of symlinks to CRL files, in order to facilitate looking
up a CRL by its issuer name.
Ericsson AB public_key 1.8 public_key(3erl)